
U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

IN THE UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

ORACLE AMERICA, INC.,

Plaintiff,

 v.

GOOGLE INC.,

Defendant.
 /

No. C 10-03561 WHA

ORDER RE COPYRIGHTABILITY
OF CERTAIN REPLICATED
ELEMENTS OF THE
JAVA APPLICATION
PROGRAMMING INTERFACE

INTRODUCTION

This action was the first of the so-called “smartphone war” cases tried to a jury.

This order includes the findings of fact and conclusions of law on a central question tried

simultaneously to the judge, namely the extent to which, if at all, certain replicated elements

of the structure, sequence and organization of the Java application programming interface are

protected by copyright.

PROCEDURAL HISTORY

In 2007, Google Inc., announced its Android software platform for mobile devices.

In 2010, Oracle Corporation acquired Sun Microsystems, Inc., and thus acquired Sun’s interest

in the popular programming language known as Java, a language used in Android. Sun was

renamed Oracle America, Inc. Shortly thereafter, Oracle America (hereinafter simply “Oracle”)

sued defendant Google and accused its Android platform as infringing Oracle’s Java-related

copyrights and patents.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 1 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2

Both Java and Android are complex platforms. Both include “virtual machines,”

development and testing kits, and application programming interfaces, also known as APIs.

Oracle’s copyright claim involves 37 packages in the Java API. Copyrightability of the elements

replicated is the only issue addressed by this order.

Due to complexity, the Court decided that the jury (and the judge) would best understand

the issues if the trial was conducted in phases. The first phase covered copyrightability

and copyright infringement as well as equitable defenses. The second phase covered patent

infringement. The third phase would have dealt with damages but was obviated by stipulation

and verdicts.

For the first phase, it was agreed that the judge would decide issues of copyrightability

and Google’s equitable defenses and that the jury would decide infringement, fair use, and

whether any copying was de minimis. Significantly, all agreed that Google had not literally

copied the software but had instead come up with its own implementations of the 37 API

packages. Oracle’s central claim, rather, was that Google had replicated the structure, sequence

and organization of the overall code for the 37 API packages.

For their task of determining infringement and fair use, the jury was told it should take

for granted that the structure, sequence and organization of the 37 API packages as a whole

was copyrightable. This, however, was not a final definitive legal ruling. One reason for this

instruction was so that if the judge ultimately ruled, after hearing the phase one evidence, that

the structure, sequence and organization in question was not protectable but was later reversed

in this regard, the court of appeals might simply reinstate the jury verdict. In this way, the court

of appeals would have a wider range of alternatives without having to worry about an expensive

retrial. Counsel were so informed but not the jury.

Each side was given seventeen hours of “air time” for phase one evidence (not counting

openings, closings or motion practice). In phase one, as stated, the parties presented evidence

on copyrightability, infringement, fair use, and the equitable defenses. As to the compilable

code for the 37 Java API packages, the jury found that Google infringed but deadlocked on the

follow-on question of whether the use was protected by fair use. As to the documentation for

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 2 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 After the jury verdict, the Court granted Oracle’s Rule 50 motion for judgment as a matter of law of
infringement of eight decompiled computer files, which were literally copied. Google admitted to copying eight
computer files by decompiling the bytecode from eight Java files into source code and then copying the source
code. These files were not proven to have ever been part of Android.

3

the 37 Java API packages, the jury found no infringement. As to certain small snippets of code,

the jury found only one was infringing, namely, the nine lines of code called “rangeCheck.”

In phase two, the jury found no patent infringement across the board. (Those patents, it should

be noted, had nothing to do with the subject addressed by this order.) The entire jury portion of

the trial lasted six weeks.1

This order addresses and resolves the core premise of the main copyright claims, namely,

whether the elements replicated by Google from the Java system were protectable by copyright

in the first place. No law is directly on point. This order relies on general principles of

copyright law announced by Congress, the Supreme Court and the Ninth Circuit.

* * *

Counsel on both sides have supplied excellent briefing and the Court wishes to recognize

their extraordinary effort and to thank counsel, including those behind the scenes burning

midnight oil in law libraries, for their assistance.

SUMMARY OF RULING

So long as the specific code used to implement a method is different, anyone is free

under the Copyright Act to write his or her own code to carry out exactly the same function

or specification of any methods used in the Java API. It does not matter that the declaration or

method header lines are identical. Under the rules of Java, they must be identical to declare a

method specifying the same functionality — even when the implementation is different.

When there is only one way to express an idea or function, then everyone is free to do so and

no one can monopolize that expression. And, while the Android method and class names could

have been different from the names of their counterparts in Java and still have worked, copyright

protection never extends to names or short phrases as a matter of law.

It is true that the very same functionality could have been offered in Android

without duplicating the exact command structure used in Java. This could have been done

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 3 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2 For purposes of this order, the term “Java” means the Java platform, sometimes abbreviated to
“J2SE,” which includes the Java development kit (JDK), javac compiler, tools and utilities, runtime programs,
class libraries (API packages), and the Java virtual machine.

3 Rather than merely vet each and every finding and conclusion proposed by the parties, this order has
navigated its own course through the evidence and arguments, although many of the proposals have found their
way into this order. Any proposal that has been expressly agreed to by the opposing side, however, shall be
deemed adopted (to the extent agreed upon) even if not expressly adopted herein. It is unnecessary for this
order to cite the record for all of the findings herein. In the findings, the phrase “this order finds . . .” is
occasionally used to emphasize a point. The absence of this phrase, however, does not mean (and should not be
construed to mean) that a statement is not a finding. All declarative fact statements set forth in the order are
factual findings.

4

by re-arranging the various methods under different groupings among the various classes and

packages (even if the same names had been used). In this sense, there were many ways to group

the methods yet still duplicate the same range of functionality.

But the names are more than just names — they are symbols in a command structure

wherein the commands take the form

java.package.Class.method()

Each command calls into action a pre-assigned function. The overall name tree, of course, has

creative elements but it is also a precise command structure — a utilitarian and functional set

of symbols, each to carry out a pre-assigned function. This command structure is a system or

method of operation under Section 102(b) of the Copyright Act and, therefore, cannot be

copyrighted. Duplication of the command structure is necessary for interoperability.

STATEMENT OF FINDINGS

1. JAVA AND ANDROID.

Java was developed by Sun, first released in 1996, and has become one of the world’s

most popular programming languages and platforms.2 The Java platform, through the use of a

virtual machine, enables software developers to write programs that are able to run on different

types of computer hardware without having to rewrite them for each different type. Programs

that run on the Java platform are written in the Java language. Java was developed to run on

desktop computers and enterprise servers.3

The Java language, like C and C++, is a human-readable language. Code written in

a human-readable language — “source code” — is not readable by computer hardware.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 4 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
4 The term “declaration” was used throughout trial to describe the headers (non-implementing code)

for methods and classes. While “header” is the more technically accurate term, this order will remain consistent
with the trial record and use “declaration” and “header” interchangeably.

5

Only “object code,” which is not human-readable, can be used by computers. Most object code

is in a binary language, meaning it consists entirely of 0s and 1s. Thus, a computer program

has to be converted, that is, compiled, from source code into object code before it can run, or

“execute.” In the Java system, source code is first converted into “bytecode,” an intermediate

form, before it is then converted into binary machine code by the Java virtual machine.

The Java language itself is composed of keywords and other symbols and a set of

pre-written programs to carry out various commands, such as printing something on the screen

or retrieving the cosine of an angle. The set of pre-written programs is called the application

programming interface or simply API (also known as class libraries).

In 2008, the Java API had 166 “packages,” broken into more than six hundred “classes,”

all broken into over six thousand “methods.” This is very close to saying the Java API had

166 “folders” (packages), all including over six hundred pre-written programs (classes) to carry

out a total of over six thousand subroutines (methods). Google replicated the exact names and

exact functions of virtually all of these 37 packages but, as stated, took care to use different code

to implement the six thousand-plus subroutines (methods) and six-hundred-plus classes.

An API is like a library. Each package is like a bookshelf in the library. Each class is

like a book on the shelf. Each method is like a how-to-do-it chapter in a book. Go to the right

shelf, select the right book, and open it to the chapter that covers the work you need. As to the

37 packages, the Java and Android libraries are organized in the same basic way but all of the

chapters in Android have been written with implementations different from Java but solving the

same problems and providing the same functions. Every method and class is specified to carry

out precise desired functions and, thus, the “declaration” (or “header”) line of code stating the

specifications must be identical to carry out the given function.4

The accused product is Android, a software platform developed by Google for

mobile devices. In August 2005, Google acquired Android, Inc., as part of a plan to develop

a smartphone platform. Google decided to use the Java language for the Android platform.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 5 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6

In late 2005, Google began discussing with Sun the possibility of taking a license to use

and to adapt the entire Java platform for mobile devices. They also discussed a possible

co-development partnership deal with Sun under which Java technology would become

an open-source part of the Android platform, adapted for mobile devices. Google and Sun

negotiated over several months, but they were unable to reach a deal.

In light of its inability to reach agreement with Sun, Google decided to use the

Java language to design its own virtual machine via its own software and to write its

own implementations for the functions in the Java API that were key to mobile devices.

Specifically, Google wrote or acquired its own source code to implement virtually all

the functions of the 37 API packages in question. Significantly, all agree that these

implementations — which account for 97 percent of the lines of code in the 37 API packages —

are different from the Java implementations. In its final form, the Android platform also had its

own virtual machine (the so-called Dalvik virtual machine), built with software code different

from the code for the Java virtual machine.

As to the 37 packages at issue, Google believed Java application programmers would

want to find the same 37 sets of functionalities in the new Android system callable by the same

names as used in Java. Code already written in the Java language would, to this extent, run on

Android and thus achieve a degree of interoperability.

The Android platform was released in 2007. The first Android phones went on sale

the following year. Android-based mobile devices rapidly grew in popularity and now comprise

a large share of the United States market. The Android platform is provided free of charge

to smartphone manufacturers. Google receives revenue through advertisement whenever a

consumer uses particular functions on an Android smartphone. For its part, Sun and Oracle

never successfully developed its own smartphone platform using Java technology.

All agree that Google was and remains free to use the Java language itself. All agree

that Google’s virtual machine is free of any copyright issues. All agree that the

six-thousand-plus method implementations by Google are free of copyright issues.

The copyright issue, rather, is whether Google was and remains free to replicate the names,

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 6 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

7

organization of those names, and functionality of 37 out of 166 packages in the Java API, which

has sometimes been referred to in this litigation as the “structure, sequence and organization” of

the 37 packages.

The Android platform has its own API. It has 168 packages, 37 of which are in

contention. Comparing the 37 Java and Android packages side by side, only three percent

of the lines of code are the same. The identical lines are those lines that specify the names,

parameters and functionality of the methods and classes, lines called “declarations” or “headers.”

In particular, the Android platform replicated the same package, method and class names,

definitions and parameters of the 37 Java API packages from the Java 2SE 5.0 platform.

This three percent is the heart of our main copyright issue.

A side-by-side comparison of the 37 packages in the J2SE 5.0 version of Java versus in

the Froyo version of Android shows that the former has a total of 677 classes (plus interfaces)

and 6508 methods wherein the latter has 616 and 6088, respectively. Twenty-one of the

packages have the same number of classes, interfaces and methods, although, as stated, the

method implementations differ.

The three percent of source code at issue includes “declarations.” Significantly, the rules

of Java dictate the precise form of certain necessary lines of code called declarations, whose

precise and necessary form explains why Android and Java must be identical when it comes to

those particular lines of code. That is, since there is only one way to declare a given method

functionality, everyone using that function must write that specific line of code in the same way.

The same is true for the “calls,” the commands that invoke the methods. To see why this is so,

this order will now review some of the key rules for Java programming. This explanation will

start at the bottom and work its way upward.

2. THE JAVA LANGUAGE AND ITS API — IMPORTANT DETAILS.

Java syntax includes separators (e.g., {, }, ;), operators (e.g., +, -, *, /, <, >), literal

values (e.g., 123, ‘x’, “Foo”), and keywords (e.g., if, else, while, return). These elements

carry precise predefined meanings. Java syntax also includes identifiers (e.g., String,

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 7 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8

java.lang.Object), which are used to name specific values, fields, methods, and classes

as described below.

These syntax elements are used to form statements, each statement being a single

command executed by the Java compiler to take some action. Statements are run in the sequence

written. Statements are commands that tell the computer to do work.

A method is like a subroutine. Once declared, it can be invoked or “called on” elsewhere

in the program. When a method is called on elsewhere in the program or in an application,

“arguments” are usually passed to the method as inputs. The output from the method is known

as the “return.” An example is a method that receives two numbers as inputs and returns the

greater of the two as an output. Another example is a method that receives an angle expressed

in degrees and returns the cosine of that angle. Methods can be much more complicated.

A method, for example, could receive the month and day and return the Earth’s declination to

the sun for that month and day.

A method consists of the method header and the method body. A method header contains

the name of the method; the number, order, type and name of the parameters used by the method;

the type of value returned by the method; the checked exceptions that the method can throw;

and various method modifiers that provide additional information about the method. At the trial,

witnesses frequently referred to the method header as the “declaration.” This discrepancy has no

impact on the ultimate analysis. The main point is that this header line of code introduces the

method body and specifies very precisely its inputs, name and other functionality. Anyone who

wishes to supply a method with the same functionality must write this line of code in the same

way and must do so no matter how different the implementation may be from someone else’s

implementation.

The method body is a block of code that then implements the method. If a method is

declared to have a return type, then the method body must have a statement and the statement

must include the expression to be returned when that line of code is reached. During trial, many

witnesses referred to the method body as the “implementation.” It is the method body that does

the heavy lifting, namely the actual work of taking the inputs, crunching them, and returning an

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 8 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9

answer. The method body can be short or long. Google came up with its own implementations

for the method bodies and this accounts for 97 percent of the code for the 37 packages.

Once the method is written, tested and in place, it can be called on to do its work.

A method call is a line of code somewhere else, such as in a different program that calls on

(or invokes) the method and specifies the arguments to be passed to the method for crunching.

The method would be called on using the command format “java.package.Class.method()”

where () indicates the inputs passed to the method. For example,

a = java.package.Class.method() would set the field “a” to equal the return of the method called.

(The words “java.package.Class.method” would in a real program be other names like

“java.lang.Math.max”; “java.package.Class.method” is used here simply to explain the format.)

After a method, the next higher level of syntax is the class. A class usually includes

fields that hold values (such as pi = 3.141592) and methods that operate on those values.

Classes are a fundamental structural element in the Java language. A Java program is written as

one or more classes. More than one method can be in a class and more than one class can be in a

package. All code in a Java program must be placed in a class. A class declaration (or header) is

a line that includes the name of the class and other information that define the class. The body of

the class includes fields and methods, and other parameters.

Classes can have subclasses that “inherit” the functionality of the class itself. When a

new subclass is defined, the declaration line uses the word “extends” to alert the compiler that

the fields and methods of the parent class are inherited automatically into the new subclass so

that only additional fields or methods for the subclass need to be declared.

The Java language does not allow a class to extend (be a subclass of) more than one

parent class. This restrictiveness may be problematic when one class needs to inherit fields

and methods from two different non-related classes. The Java programming language alleviates

this dilemma through the use of “interfaces,” which refers to something different from the word

“interface” in the API acronym. An interface is similar to a class. It can also contain methods.

It is also in its own source code file. It can also be inherited by classes. The distinction is that a

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 9 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

class may inherit from more than one interface whereas, as mentioned, a class can only inherit

from one other class.

For convenience, classes and interfaces are grouped into “packages” in the same way we

all group files into folders on our computers. There is no inheritance function within packages;

inheritance occurs only at the class and interface level.

Here is a simple example of source code that illustrates methods, classes and packages.

The italicized comments on the right are merely explanatory and are not compiled:

package java.lang; // Declares package java.lang

public class Math { // Declares class Math

public static int max (int x, int y) { // Declares method max

if (x > y) return x ; // Implementation, returns x or

else return y ; // Implementation, returns y

} // Closes method

} // Closes class

To invoke this method from another program (or class), the following call could be included in

the program:

int a = java.lang.Math.max (2, 3);

Upon reaching this statement, the computer would go and find the max method under the Math

class in the java.lang package, input “2” and “3” as arguments, and then return a “3,” which

would then be set as the value of “a.”

The above example illustrates a point critical to our first main copyright issue, namely

that the declaration line beginning “public static” is entirely dictated by the rules of the language.

In order to declare a particular functionality, the language demands that the method declaration

take a particular form. There is no choice in how to express it. To be specific, that line reads:

public static int max (int x, int y) {

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 10 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

11

The word “public” means that other programs can call on it. (If this instead says “private,”

then it can only be accessed by other methods inside the same class.) The word “static” means

that the method can be invoked without creating an instance of the class. (If this instead is an

instance method, then it would always be invoked with respect to an object.) The word “int”

means that an integer is returned by the method. (Other alternatives are “boolean,” “char,”

and “String” which respectively mean “true/false,” “single character,” and “character string.”)

Each of these three parameters is drawn from a short menu of possibilities, each possibility

corresponding to a very specific functionality. The word “max” is a name and while any name

(other than a reserved word) could have been used, names themselves cannot be copyrighted, as

will be shown. The phrase “(int x, int y)” identifies the arguments that must be passed into the

method, stating that they will be in integer form. The “x” and the “y” could be “a” and “b” or

“arg1” and “arg2,” so there is a degree of creativity in naming the arguments. Again, names

cannot be copyrighted. (Android did not copy all of the particular argument names used in Java

but did so as to some arguments.) Finally, “{” is the beginning marker that tells the compiler

that the method body is about to follow. The marker is mandatory. The foregoing description

concerns the rules for the language itself. Again, each parameter choice other than the names

has a precise functional choice. If someone wants to implement a particular function, the

declaration specification can only be written in one way.

Part of the declaration of a method can list any exceptions. When a program violates

the semantic constraints of the Java language, the Java virtual machine will signal this error to

the program as an exception for special handling. These are specified via “throw” statements

appended at the end of a declaration. Android and Java are not identical in their throw

designations but they are very similar as to the 37 packages at issue.

A Java program must have at least one class. A typical program would have more

than one method in a class. Packages are convenient folders to organize the classes.

This brings us to the application programming interface. When Java was first introduced

in 1996, the API included eight packages of pre-written programs. At least three of these

packages were “core” packages, according to Sun, fundamental to being able to use the Java

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 11 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

12

language at all. These packages were java.lang, java.io, and java.util. As a practical matter,

anyone free to use the language itself (as Oracle concedes all are), must also use the three core

packages in order to make any worthwhile use of the language. Contrary to Oracle, there is no

bright line between the language and the API.

Each package was broken into classes and those in turn broken into methods.

For example, java.lang (a package) included Math (a class) which in turn included max

(a method) to return the greater of two inputs, which was (and remains) callable as

java.lang.Math.max with appropriate arguments (inputs) in the precise form required

(see the example above).

After Java’s introduction in 1996, Sun and the Java Community Process, a mechanism

for developing a standard specifications for Java classes and methods, wrote hundreds more

programs to carry out various nifty functions and they were organized into coherent packages

by Sun to become the Java application programming interface. In 2008, as stated, the Java API

had grown from the original eight to 166 packages with over six hundred classes with

over six thousand methods. All of it was downloadable from Sun’s (now Oracle’s) website

and usable by anyone, including Java application developers, upon agreement to certain license

restrictions. Java was particularly useful for writing programs for use via the Internet and

desktop computers.

Although the declarations must be the same to achieve the same functionality, the names

of the methods and the way in which the methods are grouped do not have to be the same.

Put differently, many different API organizations could supply the same overall range of

functionality. They would not, however, be interoperable. Specifically, code written for one

API would not run on an API organized differently, for the name structure itself dictates the

precise form of command to call up any given method.

To write a fresh program, a programmer names a new class and adds fields and methods.

These methods can call upon the pre-written functions in the API. Instead of re-inventing the

wheels in the API from scratch, programmers can call on the tried-and-true pre-packaged

programs in the API. These are ready-made to perform a vast menu of functions. This is the

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 12 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

13

whole point of the API. For example, a student in high school can write a program that can call

upon java.lang.Math.max to return the greater of two numbers, or to find the cosine of an angle,

as one step in a larger homework assignment. Users and developers can supplement the API

with their own specialized methods and classes.

The foregoing completes the facts necessary to decide the copyrightability issue but since

Oracle has made much of two small items copied by Google, this order will now make findings

thereon so that there will be proper context for the court of appeals.

3. RANGECHECK AND THE DE-COMPILED TEST FILES.

Oracle has made much of nine lines of code that crept into both Android and Java.

This circumstance is so innocuous and overblown by Oracle that the actual facts, as found

herein by the judge, will be set forth below for the benefit of the court of appeals.

Dr. Joshua Bloch worked at Sun from August 1996 through July 2004, eventually

holding the title of distinguished engineer. While working at Sun, Dr. Bloch wrote a nine-line

code for a function called “rangeCheck,” which was put into a larger file, “Arrays.java,” which

was part of the class library for the 37 API packages at issue. The function of rangeCheck was

to check the range of a list of values before sorting the list. This was a very simple function.

In 2004, Dr. Bloch left Sun to work at Google, where he came to be the “chief Java

architect” and “Java guru.” Around 2007, Dr. Bloch wrote the files, “Timsort.java” and

“ComparableTimsort,” both of which included the same rangeCheck function he wrote while

at Sun. He wrote the Timsort files in his own spare time and not as part of any Google project.

He planned to contribute Timsort and ComparableTimsort back to the Java community by

submitting his code to an open implementation of the Java platform, OpenJDK, which was

controlled by Sun. Dr. Bloch did, in fact, contribute his Timsort file to OpenJDK and Sun

included Timsort as part of its Java J2SE 5.0 release.

In 2009, Dr. Bloch worked on Google’s Android project for approximately one year.

While working on the Android team, Dr. Bloch also contributed Timsort and

ComparableTimsort to the Android platform. Thus, the nine-line rangeCheck function

was copied into Google’s Android. This was how the infringement happened to occur.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 13 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

14

When discovered, the rangeCheck lines were taken out of the then-current version of Android

over a year ago. The rangeCheck block of code appeared in a class containing 3,179 lines of

code. This was an innocent and inconsequential instance of copying in the context of a massive

number of lines of code.

Since the remainder of this order addresses only the issue concerning structure, sequence

and organization, and since rangeCheck has nothing to do with that issue, rangeCheck will not

be mentioned again, but the reader will please remember that it has been readily conceded that

these nine lines of code found their way into an early version of Android.

Google also copied eight computer files by decompiling the bytecode from eight Java

files back into source code and then using the source code. These files were merely used as test

files and never found their way into Android or any handset. These eight files have been treated

at trial as a single unit.

Line by line, Oracle tested all fifteen million lines of code in Android (and all files used

to test along the way leading up to the final Android) and these minor items were the only items

copied, save and except for the declarations and calls which, as stated, can only be written in one

way to achieve the specified functionality.

ANALYSIS AND CONCLUSIONS OF LAW

1. NAMES AND SHORT PHRASES.

To start with a clear-cut rule, names, titles and short phrases are not copyrightable,

according to the United States Copyright Office, whose rule thereon states as follows:

Copyright law does not protect names, titles, or short phrases or
expressions. Even if a name, title, or short phrase is novel or
distinctive or lends itself to a play on words, it cannot be protected
by copyright. The Copyright Office cannot register claims to
exclusive rights in brief combinations of words such as:

• Names of products or services.

• Names of business organizations, or groups (including the
names of performing groups).

• Pseudonyms of individuals (including pen or stage names).

• Titles of works.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 14 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

15

• Catchwords, catchphrases, mottoes, slogans, or short
advertising expressions.

• Listings of ingredients, as in recipes, labels, or formulas.
When a recipe or formula is accompanied by an
explanation or directions, the text directions may be
copyrightable, but the recipe or formula itself remains
uncopyrightable.

U.S. Copyright Office, Circular 34; see 37 C.F.R. 202.1(a).

This rule is followed in the Ninth Circuit. Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d

1510, 1524 n.7 (9th Cir. 1992). This has relevance to Oracle’s claim of copyright ownership

over names of methods, classes and packages.

2. THE DEVELOPMENT OF LAW ON THE COPYRIGHTABILITY
OF COMPUTER PROGRAMS AND THEIR STRUCTURE,
SEQUENCE AND ORGANIZATION.

Turning now to the more difficult question, this trial showcases a distinction between

copyright protection and patent protection. It is an important distinction, for copyright

exclusivity lasts 95 years whereas patent exclusivity lasts twenty years. And, the Patent and

Trademark Office examines applications for anticipation and obviousness before allowance

whereas the Copyright Office does not. This distinction looms large where, as here, the vast

majority of the code was not copied and the copyright owner must resort to alleging that the

accused stole the “structure, sequence and organization” of the work. This phrase — structure,

sequence and organization — does not appear in the Act or its legislative history. It is a phrase

that crept into use to describe a residual property right where literal copying was absent.

A question then arises whether the copyright holder is more appropriately asserting an exclusive

right to a functional system, process, or method of operation that belongs in the realm of patents,

not copyrights.

A. Baker v. Seldon.

The general question predates computers. In the Supreme Court’s decision in Baker v.

Seldon, 101 U.S. 99 (1879), the work at issue was a book on a new system of double-entry

bookkeeping. It included blank forms, consisting of ruled lines, and headings, illustrating the

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 15 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

16

system. The accused infringer copied the method of bookkeeping but used different forms.

The Supreme Court framed the issue as follows:

The evidence of the complainant is principally directed to the
object of showing that Baker uses the same system as that which is
explained and illustrated in Selden’s books. It becomes important,
therefore, to determine whether, in obtaining the copyright of his
books, he secured the exclusive right to the use of the system or
method of book-keeping which the said books are intended to
illustrate and explain.

Id. at 101. Baker held that using the same accounting system would not constitute copyright

infringement. The Supreme Court explained that only patent law can give an exclusive right to

a method:

To give to the author of the book an exclusive property in the art
described therein, when no examination of its novelty has ever
been officially made, would be a surprise and a fraud upon the
public. That is the province of letters-patent, not of copyright.
The claim to an invention or discovery of an art or manufacture
must be subjected to the examination of the Patent Office before
an exclusive right therein can be obtained; and it can only be
secured by a patent from the government.

Id. at 102. The Supreme Court went on to explain that protecting the method under copyright

law would frustrate the very purpose of publication:

The copyright of a work on mathematical science cannot give to
the author an exclusive right to the methods of operation which he
propounds, or to the diagrams which he employs to explain them,
so as to prevent an engineer from using them whenever occasion
requires. The very object of publishing a book on science or the
useful arts is to communicate to the world the useful knowledge
which it contains. But this object would be frustrated if the
knowledge could not be used without incurring the guilt of piracy
of the book.

Id. at 103. Baker also established the “merger” doctrine for systems and methods intermingled

with the texts or diagrams illustrating them:

And where the art it teaches cannot be used without employing the
methods and diagrams used to illustrate the book, or such as are
similar to them, such methods and diagrams are to be considered
as necessary incidents to the art, and given therewith to the public;
not given for the purpose of publication in other works explanatory
of the art, but for the purpose of practical application.

Ibid. It is true that Baker is aged but it is not passé. To the contrary, even in our modern era,

Baker continues to be followed in the appellate courts, as will be seen below.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 16 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

17

B. The Computer Age and Section 102(b) of the 1976 Act.

Almost a century later, Congress revamped the Copyright Act in 1976. By then, software

for computers was just emerging as a copyright issue. Congress decided in the 1976 Act that

computer programs would be copyrightable as “literary works.” See H.R. REP. NO. 94-1476,

at 54 (1976). There was, however, no express definition of a computer program until an

amendment in 1980.

The 1976 Act also codified a Baker-like limitation on the scope of copyright protection in

Section 102(b). See Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1443 n.11 (9th Cir.

1994). Section 102(b) stated (and still states):

In no case does copyright protection for an original work of
authorship extend to any idea, procedure, process, system, method
of operation, concept, principle, or discovery, regardless of the
form in which it is described, explained, illustrated, or embodied in
such work.

The House Report that accompanied Section 102(b) of the Copyright Act explained:

Copyright does not preclude others from using the ideas or
information revealed by the author’s work. It pertains to the
literary, musical, graphic, or artistic form in which the author
expressed intellectual concepts. Section 102(b) makes clear that
copyright protection does not extend to any idea, procedure,
process, system, method of operation, concept, principle, or
discovery, regardless of the form in which it is described,
explained, illustrated, or embodied in such work.

Some concern has been expressed lest copyright in computer
programs should extend protection to the methodology or
processes adopted by the programmer, rather than merely to the
‘writing’ expressing his ideas. Section 102(b) is intended, among
other things, to make clear that the expression adopted by the
programmer is the copyrightable element in a computer program,
and that the actual processes or methods embodied in the program
are not within the scope of the copyright law.

Section 102(b) in no way enlarges or contracts the scope of
copyright protection under the present law. Its purpose is to
restate, in the context of the new single Federal system of
copyright, that the basic dichotomy between expression and idea
remains unchanged.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 17 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
5 The Court has reviewed the entire legislative history. The quoted material above is the only passage

of relevance. This order includes a summary of the CONTU report but it came after-the-fact and had little
impact on the Act other than to include a definition of “computer program.”

18

H.R. REP. NO. 94-1476, at 56–57 (1976) (emphasis added).5

Recognizing that computer programs posed novel copyright issues, Congress established

the National Commission on New Technological Uses of Copyrighted Works (referred to as

CONTU) to recommend the extent of copyright protection for software. The Commission

consisted of twelve members with Judge Stanley Fuld as chairman and Professor Melville

Nimmer as vice-chairman.

The Commission recommended that a definition of “computer program” be added to the

copyright statutes. This definition was adopted in 1980 and remains in the current statute:

A “computer program” is a set of statements or instructions to be
used directly or indirectly in a computer in order to bring about a
certain result.

17 U.S.C. 101. Moreover, the CONTU report stated that Section 102(b)’s preclusion of

copyright protection for “procedure, process, system, method of operation” was reconcilable

with the new definition of “computer program.” The Commission explained the dichotomy

between copyrightability and non-copyrightability as follows:

Copyright, therefore, protects the program so long as it remains
fixed in a tangible medium of expression but does not protect the
electromechanical functioning of a machine. The way copyright
affects games and game-playing is closely analogous: one may not
adopt and republish or redistribute copyrighted game rules, but the
copyright owner has no power to prevent others from playing the
game.

Thus, one is always free to make a machine perform any
conceivable process (in the absence of a patent), but one is not free
to take another’s program.

NAT’L COMM’N ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS, FINAL REPORT 20

(1979) (emphasis added). The Commission also recognized the “merger” doctrine, a rule of

importance a few pages below in this order (emphasis added):

The “idea-expression identity” exception provides that copyrighted
language may be copied without infringing when there is but a
limited number of ways to express a given idea. This rule is the
logical extension of the fundamental principle that copyright
cannot protect ideas. In the computer context this means that when

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 18 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

19

specific instructions, even though previously copyrighted, are the
only and essential means of accomplishing a given task, their later
use by another will not amount to an infringement
[C]opyright protection for programs does not threaten to block the
use of ideas or program language previously developed by others
when that use is necessary to achieve a certain result. When other
language is available, programmers are free to read copyrighted
programs and use the ideas embodied in them in preparing their
own works.

Ibid. The Commission realized that differentiating between the copyrightable form of a program

and the uncopyrightable process was difficult, and expressly decided to leave the line drawing to

federal courts:

[T]he many ways in which programs are now used and the new
applications which advancing technology will supply may make
drawing the line of demarcation more and more difficult.
To attempt to establish such a line in this report written in 1978
would be futile. . . . Should a line need to be drawn to exclude
certain manifestations of programs from copyright, that line should
be drawn on a case-by-case basis by the institution designed to
make fine distinctions — the federal judiciary.

Id. at 22–23.

Congress prepared no legislative reports discussing the CONTU comments regarding

Section 102(b). See H.R. REP. NO. 96-1307, at 23–24 (1980). Nevertheless, Congress followed

CONTU’s recommendations by adding the definition of computer programs to the statute and

amending a section of the Act not relevant to this order. See Apple Computer, Inc. v. Formula

Intern. Inc., 725 F.2d 521, 522–25 (9th Cir. 1984).

Everyone agrees that no one can copy line-for-line someone else’s copyrighted computer

program. When the line-by-line listings are different, however, some copyright owners have

nonetheless accused others of stealing the “structure, sequence and organization” of the

copyrighted work. That is the claim here.

C. Decisions Outside the Ninth Circuit.

No court of appeals has addressed the copyrightability of APIs, much less their

structure, sequence and organization. Nor has any district court. Nevertheless, a review of the

case law regarding non-literal copying of software provides guidance. Circuit decisions outside

the Ninth Circuit will be considered first.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 19 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

20

The Third Circuit led off in Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc.,

797 F.2d 1222 (3d Cir. 1986). In that case, the claimant owned a program, Dentalab, that

handled the administrative and bookkeeping tasks of dental prosthetics businesses. The accused

infringer developed another program, Dentcom, using a different programming language.

The Dentcom program handled the same tasks as the Dentalab program and had the following

similarities:

The programs were similar in three significant respects . . . most
of the file structures, and the screen outputs, of the programs
were virtually identical . . . five particularly important
“subroutines” within both programs — order entry, invoicing,
accounts receivable, end of day procedure, and end of month
procedure — performed almost identically in both programs.

Id. at 1228. On these facts, the district court had found, after a bench trial, that the accused

infringer copied the claimant’s software program. Id. at 1228–29.

On appeal, the accused infringer argued that the structure of the claimant’s program was

not protectable under copyright. In rejecting this argument, the court of appeals created the

following framework to deal with non-literal copying of software:

[T]he line between idea and expression may be drawn with
reference to the end sought to be achieved by the work in question.
In other words, the purpose or function of a utilitarian work would
be the work’s idea, and everything that is not necessary to that
purpose or function would be part of the expression of the idea.

Id. at 1236 (emphasis in original). Applying this test, Whelan found that the structure of

Dentalab was copyrightable because there were many different ways to structure a program that

managed a dental laboratory:

[T]he idea of the Dentalab program was the efficient management
of a dental laboratory (which presumably has significantly
different requirements from those of other businesses). Because
that idea could be accomplished in a number of different ways with
a number of different structures, the structure of the Dentalab
program is part of the program’s expression, not its idea.

Id. at 1236 n.28. The phrase “structure, sequence and organization” originated in a passage in

Whelan explaining that the opinion used those words interchangeably and that, although not

themselves part of the Act, they were intended to capture the thought that “sequence and order

could be parts of the expression, not the idea, of a work.” Id. at 1239, 1248.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 20 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

21

To summarize, in affirming the district court’s final judgment of infringement, Whelan

held that the structure of the Dentalab program was copyrightable because there were many

other ways to perform the same function of handling the administrative and bookkeeping tasks

of dental prosthetics businesses with different structures and designs. Id. at 1238. Others were

free to come up with their own version but could not appropriate the Dentalab structure.

This decision plainly seems to have been the high-water mark of copyright protection for the

structure, sequence and organization of computer programs. It was also the only appellate

decision found by the undersigned judge that affirmed (or directed) a final judgment of

copyrightability on a structure, sequence and organization theory.

Perhaps because it was the first appellate decision to wade into this problem, Whelan

has since been criticized by subsequent treatises, articles, and courts, including our own court

of appeals. See Sega Enters., Ltd. v. Accolade, Inc., 977 F.2d 1510, 1524–25 (9th Cir. 1992).

Instead, most circuits, including ours, have adopted some variation of an approach taken later

by the Second Circuit. See Apple Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1445

(9th Cir. 1994).

In Computer Associates International, Inc. v. Altai, 982 F.2d 693 (2d Cir. 1992),

the claimant owned a program designed to translate the language of another program into

the particular language that the computer’s operating system would be able to understand.

The accused infringer developed its own program with substantially similar structure but

different source code (using the same programming language). The Second Circuit criticized

Whelan for taking too narrow a view of the “idea” of a program. The Second Circuit adopted

instead an “abstract-filtration-comparison” test. The test first dissected the copyrighted program

into its structural components:

In ascertaining substantial similarity under [the
abstract-filtration-comparison test], a court would first break down
the allegedly infringed program into its constituent structural parts.
Then, by examining each of these parts for such things as
incorporated ideas, expression that is necessarily incidental to
those ideas, and elements that are taken from the public domain, a
court would then be able to sift out all non-protectable material.

Id. at 706.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 21 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

22

Then, the test filtered out structures that were not copyrightable. For this filtration step,

the court of appeals relied on the premise that programmers fashioned structures “to maximize

the program’s speed, efficiency, as well as simplicity for user operation, while taking into

consideration certain externalities such as the memory constraints of the computer upon which

the program will be run.” Id. at 698. Because these were “practical considerations,” the court

held that structures based on these considerations were not copyrightable expressions.

Thus, for the filtration step, the court of appeals outlined three types of structures that

should be precluded from copyright protection. First, copyright protection did not extend to

structures dictated by efficiency. A court must inquire

whether the use of this particular set of modules [is] necessary
efficiently to implement that part of the program’s process being
implemented. If the answer is yes, then the expression represented
by the programmer’s choice of a specific module or group of
modules has merged with their underlying idea and is unprotected.

Id. at 708 (emphasis in original). Paradoxically, this meant that non-efficient structures might be

copyrightable while efficient structures may not be. Nevertheless, the Second Circuit explained

its reasoning as follows:

In the context of computer program design, the concept of
efficiency is akin to deriving the most concise logical proof or
formulating the most succinct mathematical computation.
Thus, the more efficient a set of modules are, the more closely
they approximate the idea or process embodied in that particular
aspect of the program’s structure.

While, hypothetically, there might be a myriad of ways in
which a programmer may effectuate certain functions within
a program — i.e., express the idea embodied in a given
subroutine — efficiency concerns may so narrow the practical
range of choice as to make only one or two forms of expression
workable options.

Ibid. Efficiency also encompassed user simplicity and ease of use. Id. at 708–09.

Second, copyright protection did not extend to structures dictated by external factors.

The court explained this as follows:

[I]n many instances it is virtually impossible to write a program
to perform particular functions in a specific computing
environment without employing standard techniques. This is a
result of the fact that a programmer’s freedom of design choice
is often circumscribed by extrinsic considerations such as (1) the
mechanical specifications of the computer on which a particular

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 22 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

23

program is intended to run; (2) compatibility requirements of
other programs with which a program is designed to operate in
conjunction; (3) computer manufacturers’ design standards;
(4) demands of the industry being serviced; and (5) widely
accepted programming practices within the computer industry.

Id. at 709–10.

Third, copyright protection did not extend to structures already found in the public

domain. The court reasoned that materials in the public domain, such as elements of a computer

program that have been freely accessible, cannot be appropriated. Ibid. Ultimately, in the case

before it, the Second Circuit held that after removing unprotectable elements using the criteria

discussed above, only a few lists and macros in accused product were similar to the copied

product, and their impact on the program was not large enough to declare copyright

infringement. Id. at 714–15. The copyright claim, in short, failed.

The Tenth Circuit elaborated on the abstract-filtration-comparison test in Gates Rubber

Co. v. Bando Chemical Industries, Ltd., 9 F.3d 823 (10th Cir. 1993). There, the claimant

developed a computer program that determined the proper rubber belt for a particular machine

by performing complicated calculations involving numerous variables. The program used

published formulas in conjunction with certain mathematical constants developed by the

claimant to determine belt size. The Tenth Circuit offered the following description of a

software program’s structure:

The program’s architecture or structure is a description of how
the program operates in terms of its various functions, which are
performed by discrete modules, and how each of these modules
interact with each other.

Id. at 835. As had the Second Circuit, the Tenth Circuit held that filtration should eliminate the

unprotectable elements of processes, facts, public domain information, merger material, scenes a

faire material, and other unprotectable elements suggested by the particular facts of the program

under examination. For Section 102(b) processes, the court gave the following description:

Returning then to our levels of abstraction framework, we note
that processes can be found at any level, except perhaps the main
purpose level of abstraction. Most commonly, processes will be
found as part of the system architecture, as operations within
modules, or as algorithms.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 23 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

24

Id. at 837. The court described the scenes a faire doctrine for computer programs as follows:

The scenes a faire doctrine also excludes from protection those
elements of a program that have been dictated by external factors.
In the area of computer programs these external factors may
include: hardware standards and mechanical specifications,
software standards and compatibility requirements, Sega
Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510, 1525–27
(9th Cir. 1993), computer manufacturer design standards, target
industry practices and demands, and computer industry
programming practices.

* * *

We recognize that the scenes a faire doctrine may implicate the
protectability of interfacing and that this topic is very sensitive and
has the potential to effect [sic] widely the law of computer
copyright. This appeal does not require us to determine the scope
of the scenes a faire doctrine as it relates to interfacing and
accordingly we refrain from discussing the issue.

Id. at 838 & n.14 (all citations omitted except Sega). Like the Second Circuit, the Tenth Circuit

also listed many external considerations — such as compatibility, computer industry

programming practices, and target industry practices and demands — that would exclude

elements from copyright protection under the scenes a faire doctrine. Ultimately, the

Tenth Circuit remanded because the district court had failed to make specific findings

that fit this framework.

The First Circuit weighed in with its 1995 decision Lotus Development Corp. v. Borland

International, Inc., 49 F.3d 807 (1st Cir. 1995). In Lotus, the claimant owned the Lotus 1-2-3

spreadsheet program that enabled users to perform accounting functions electronically on

a computer. Users manipulated and controlled the program via a series of menu commands,

such as “Copy,” “Print,” and “Quit.” In all, Lotus 1-2-3 had 469 commands arranged into more

than 50 menus and submenus. Lotus 1-2-3 also allowed users to write “macros,” whereby a user

could designate a series of command choices (sequence of menus and submenus) with a single

macro keystroke. Then, to execute that series of commands, the user only needed to type the

single pre-programmed macro keystroke, causing the program to recall and perform the

designated series of commands automatically. Id. at 809–10.

The accused infringer Borland developed a competing spreadsheet program.

Borland included the Lotus menu command hierarchy in its program to make it compatible

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 24 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

25

with Lotus 1-2-3 so that spreadsheet users who were already familiar with Lotus 1-2-3 would

be able to switch to the Borland program without having to learn new commands or rewrite

their Lotus macros. In so doing, Borland did not copy any of Lotus’s underlying source or

object code. (The opinion did not say whether the programs were written in the same language.)

The district court had ruled that the Lotus 1-2-3 menu command hierarchy was a

copyrightable expression because there were many ways to construct a spreadsheet menu tree.

Thus, the district court had concluded that the Lotus developers’ choice and arrangement of

command terms, reflected in the Lotus menu command hierarchy, constituted copyrightable

expression. Id. at 810–11.

The First Circuit, however, held that the Lotus menu command hierarchy was not

copyrightable because it was a method of operation under Section 102(b). The court explained:

We think that “method of operation,” as that term is used in
§ 102(b), refers to the means by which a person operates
something, whether it be a car, a food processor, or a computer.
Thus a text describing how to operate something would not extend
copyright protection to the method of operation itself; other people
would be free to employ that method and to describe it in their
own words. Similarly, if a new method of operation is used rather
than described, other people would still be free to employ or
describe that method.

Id. at 815.

The court reasoned that because the menu command hierarchy was essential to make use

of the program’s functional capabilities, it should be properly categorized as a “method of

operation” under Section 102(b). The court explained:

The Lotus menu command hierarchy does not merely explain and
present Lotus 1-2-3’s functional capabilities to the user; it also
serves as the method by which the program is operated and
controlled In other words, to offer the same capabilities as
Lotus 1-2-3, Borland did not have to copy Lotus’s underlying code
(and indeed it did not); to allow users to operate its programs in
substantially the same way, however, Borland had to copy the
Lotus menu command hierarchy. Thus the Lotus 1-2-3 code is not
a uncopyrightable “method of operation.”

Ibid. Thus, the court reasoned that although Lotus had made “expressive” choices of what

to name the command terms and how to structure their hierarchy, it was nevertheless an

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 25 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

26

uncopyrightable “method of operation.” The Lotus decision was affirmed by an evenly divided

Supreme Court (four to four).

The Federal Circuit had the opportunity to apply Lotus in an appeal originating from

the District of Massachusetts in Hutchins v. Zoll Medical Corp., 492 F.3d 1377 (Fed. Cir. 2007)

(affirming summary judgment against copyright owner). In Hutchins, the claimant owned a

program for performing CPR and argued that his copyright covered the “system of logic

whereby CPR instructions are provided by computerized display, and [] the unique logic

contained in [his] software program.” Id. at 1384. The claimant argued that the accused

program was similar because it “perform[ed] the same task in the same way, that is, by

measuring heart activity and signaling the quantity and timing of CPR compressions to be

performed by the rescuer.” Ibid. The court of appeals rejected this argument, holding that

copyright did not protect the “technologic method of treating victims by using CPR and

instructing how to use CPR.” Ibid. (citing Lotus).

D. Decisions in the Supreme Court and in our Circuit.

Our case is governed by the law in the Ninth Circuit and, of course, the Supreme Court.

The Supreme Court missed the opportunity to address these issues in Lotus due to the

four-to-four affirmance and has, thus, never reached the general question. Nonetheless, Baker,

which is still good law, provides guidance and informs how we should read Section 102(b).

Another Supreme Court decision, Feist Publications, Inc. v. Rural Telephone Services

Co., Inc., 499 U.S. 340 (1991), which dealt primarily with the copyrightability of purely factual

compilations, provided some general principles. In Feist, the Supreme Court considered the

copyrightability of a telephone directory comprised of names, addresses, and phone numbers

organized in alphabetical order. The Supreme Court rejected the notion that copyright law was

meant to reward authors for the “sweat of the brow.” This meant that we should not yield to the

temptation to award copyright protection merely because a lot of sweat went into the work.

The Supreme Court concluded that protection only extended to the original components of an

author’s work. Id. at 353. The Supreme Court concluded:

This inevitably means that the copyright in a factual compilation
is thin. Notwithstanding a valid copyright, a subsequent compiler

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 26 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

27

remains free to use the facts contained in another’s publication to
aid in preparing a competing work, so long as the competing work
does not feature the same selection and arrangement.

Id. at 349.

Turning to our own Ninth Circuit, our court of appeals has recognized that non-literal

components of a program, including the structure, sequence and organization and user interface,

can be protectable under copyright depending on whether the structure, sequence and

organization in question qualifies as an expression of an idea rather than an idea itself.

Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175 (9th Cir. 1989).

This decision arrived between the Third Circuit’s Whelan decision and the Second Circuit’s

Computer Associates decision. Johnson Controls is one of Oracle’s mainstays herein.

In Johnson Controls, the claimant developed a system of computer programs to

control wastewater treatment plants. The district court found that the structure, sequence and

organization of the program was expression and granted a preliminary injunction even though

the accused product did not have similar source or object code. Id. at 1174. Therefore, the

standard of review on appeal was limited to abuse of discretion and clear error. Our court

of appeals affirmed the preliminary injunction, stating that the claimant’s program was very

sophisticated and each individual application was customized to the needs of the purchaser,

indicating there may have been room for individualized expression in the accomplishment

of common functions. Since there was some discretion and opportunity for creativity in the

structure, the structure of the program was expression rather than an idea. Id. at 1175.

Johnson Controls, however, did not elaborate on which particular structures deserved copyright

protection.

In Brown Bag Software v. Symantec Corp., 960 F.2d 1465 (9th Cir. 1992), our court

of appeals outlined a two-part test for determining similarity between computer programs:

the extrinsic and intrinsic tests. This pertained to infringement, not copyrightability.

The claimant, who owned a computer program for outlining, alleged that an accused infringer

copied his program’s non-literal features. Id. at 1472. The claimant alleged that seventeen

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 27 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

28

specific features in the programs were similar. On summary judgment, the district court had

found that each feature was either not protectable or not similar as a matter of law:

The district court ruled that one group of features represented a
claim of copyright in “concepts . . . fundamental to a host of
computer programs” such as “the need to access existing files,
edit the work, and print the work.” As such, these features, which
took the form of four options in the programs’ opening menus,
were held to be unprotectable under copyright.

A second group of features involved “nine functions listed in
the menu bar” and the fact that “virtually all of the functions of
the PC-Outline program [] can be performed by Grandview.”
The district court declared that “these functions constitute the idea
of the outlining program” and, furthermore, “[t]he expression of
the ideas inherent in the features are . . . distinct.” The court also
held that “the similarity of using the main editing screen to enter
and edit data . . . is essential to the very idea of a computer
outlining program.”

The third group of features common to PC-Outline and Grandview
concerned “the use of pull-down windows.” Regarding these
features, the district court made three separate rulings. The court
first found that “[p]laintiffs may not claim copyright protection of
an . . . expression that is, if not standard, then commonplace in the
computer software industry” [and] that the pull-down
windows of the two programs look different.

Id. at 1472–73. Our court of appeals affirmed the district court’s order without elaborating on

the copyrightability rulings quoted above.

In Atari Games Corp. v. Nintendo of America Inc., 975 F.2d 832 (Fed. Cir. 1992),

the Federal Circuit had occasion to interpret Ninth Circuit copyright precedent. In Atari, the

claimant Nintendo sued Atari for copying the Nintendo 10NES program, which prevented the

Nintendo game console from accepting unauthorized game cartridges. Atari deciphered the

10NES program through reverse engineering and developed its own program to unlock the

Nintendo game console. Atari’s new program generated signals indistinguishable from 10NES

but was written in a different programming language. Id. at 835–36.

Applying our Ninth Circuit precedents, Johnson Controls and Brown Bag, the Federal

Circuit affirmed the district court’s preliminary injunction for copyright infringement.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 28 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

The Federal Circuit held that the 10NES program contained copyrightable expression because

it had organization and sequencing unnecessary to the unlocking function:

Nintendo’s 10NES program contains more than an idea or
expression necessarily incident to an idea. Nintendo incorporated
within the 10NES program creative organization and sequencing
unnecessary to the lock and key function. Nintendo chose
arbitrary programming instructions and arranged them in a unique
sequence to create a purely arbitrary data stream. This data stream
serves as the key to unlock the NES. Nintendo may protect this
creative element of the 10NES under copyright.

Id. at 840 (emphasis added). The Federal Circuit stated that there were creative elements in the

10NES program

beyond the literal expression used to effect the unlocking process.
The district court defined the unprotectable 10NES idea or process
as the generation of a data stream to unlock a console. This court
discerns no clear error in the district court’s conclusion.
The unique arrangement of computer program expression which
generates that data stream does not merge with the process so long
as alternate expressions are available. In this case, Nintendo has
produced expert testimony showing a multitude of different ways
to generate a data stream which unlocks the NES console.

Ibid. (citation omitted). Thus, the Federal Circuit held that the district court did not err in

concluding that the 10NES program contained protectable expression and affirmed the

preliminary injunction.

Next came two decisions holding that Section 102(b) bars from copyright software

interfaces necessary for interoperability. The Section 102(b) holdings arose in the context of

larger holdings that it had been fair use to copy software to reverse-engineer it so as to isolate

the unprotectable segments. These two decisions will now be described in detail.

In Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992), the accused

infringer had to copy object code in order to understand the interface procedures between the

Sega game console and a game cartridge, that is, how the software in the game console

interacted with the software in the game cartridge to achieve compatibility. Id. at 1515–16.

After learning and documenting these interactions (interface procedures), the accused infringer

wrote its own source code to mimic those same interface procedures in its own game cartridges

so that its cartridges could run on the Sega console. Our court of appeals held that the copying

of object code for the purpose of achieving compatibility was fair use. Notably, in its fair-use

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 29 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

analysis, our court of appeals expressly held that the interface procedures for compatibility were

functional aspects not copyrightable under Section 102(b): “Accolade copied Sega’s software

solely in order to discover the functional requirements for compatibility with the Genesis console

— aspects of Sega’s programs that are not protected by copyright. 17 U.S.C. § 102(b).” Id. at

1522. The court used the phrase “interface procedures,” a term describing the interface between

applications, multiple times to describe the functional aspect of the interaction between software

programs and summarized its analysis of copyrightability as follows:

In summary, the record clearly establishes that disassembly of the
object code in Sega’s video game cartridges was necessary in
order to understand the functional requirements for Genesis
compatibility. The interface procedures for the Genesis console
are distributed for public use only in object code form, and are
not visible to the user during operation of the video game program.
Because object code cannot be read by humans, it must be
disassembled, either by hand or by machine. Disassembly of
object code necessarily entails copying. Those facts dictate our
analysis of the second statutory fair use factor. If disassembly of
copyrighted object code is per se an unfair use, the owner of the
copyright gains a de facto monopoly over the functional aspects
of his work — aspects that were expressly denied copyright
protection by Congress. 17 U.S.C. § 102(b). In order to enjoy a
lawful monopoly over the idea or functional principle underlying a
work, the creator of the work must satisfy the more stringent
standards imposed by the patent laws. Bonito Boats, Inc. v.
Thunder Craft Boats, Inc., 489 U.S. 141, 159–64, 109 S.Ct. 971,
982–84, 103 L.Ed.2d 118 (1989). Sega does not hold a patent on
the Genesis console.

Sega, 977 F.2d at 1526 (emphasis added). In Sega, the interface procedure that was required for

compatibility was “20 bytes of initialization code plus the letters S–E–G–A.” Id. at 1524 n.7.

Our court of appeals found that this interface procedure was functional and therefore not

copyrightable under Section 102(b). The accused infringer Accolade was free to copy this

interface procedure for use in its own games to ensure compatibility with the Sega Genesis game

console. Our court of appeals distinguished the Atari decision, where the Federal Circuit had

found that the Nintendo’s 10NES security system was infringed, because there was only one

signal that unlocked the Sega console, unlike the “multitude of different ways to unlock” the

Nintendo console:

We therefore reject Sega’s belated suggestion that Accolade’s
incorporation of the code which “unlocks” the Genesis III console
is not a fair use. Our decision on this point is entirely consistent

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 30 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

31

with Atari v. Nintendo, 975 F.2d 832 (Fed. Cir.1992). Although
Nintendo extended copyright protection to Nintendo’s 10NES
security system, that system consisted of an original program
which generates an arbitrary data stream “key” which unlocks the
NES console. Creativity and originality went into the design of
that program. See id. at 840. Moreover, the federal circuit
concluded that there is a “multitude of different ways to generate a
data stream which unlocks the NES console.” Atari, 975 F.2d at
839. The circumstances are clearly different here. Sega’s key
appears to be functional. It consists merely of 20 bytes of
initialization code plus the letters S–E–G–A. There is no showing
that there is a multitude of different ways to unlock the Genesis III
console.

Sega, 977 F.2d at 1524 n.7.

This order reads Sega footnote seven (quoted above) as drawing a line between copying

functional aspects necessary for compatibility (not copyrightable) versus copying functional

aspects unnecessary for compatibility (possibly copyrightable). Our court of appeals explained

that in Atari, the Nintendo game console’s 10NES program had had functionality unnecessary to

the lock-and-key function. See also Atari, 975 F.2d at 840. Since the accused infringer Atari

had copied the entire 10NES program, it also had copied aspects of the 10NES program

unnecessary for compatibility between the console and game cartridges. This was inapposite to

the facts of Sega, where the accused infringer Accolade’s final product duplicated only the

aspect of Sega’s program necessary for compatibility between the console and game cartridges.

Thus, the holding of our court of appeals was that the aspect of a program necessary for

compatibility was unprotectable, specifically invoking Section 102(b), but copyrightable

expression could still exist for aspects unnecessary for compatibility.

The Sega decision and its compatibility reasoning was followed in a subsequent

reverse-engineering decision by our court of appeals, Sony Computer Entertainment, Inc., v.

Connectix Corporation, 203 F.3d 596 (9th Cir. 2000). The facts were somewhat different in

Sony. There, the accused infringer Connectix did not create its own games for Sony’s

Playstation game console; instead, the accused infringer created an emulated environment that

duplicated the interface procedures of Sony’s console so that games written for Sony’s console

could be played on a desktop computer running the emulator. In order to do this, the accused

infringer copied object code for the Sony Playstation’s operating software, its BIOS program, in

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 31 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

6 Sega and Sony are not the only Ninth Circuit decisions placing a premium on functionality as
indicating uncopyrightability. Other such decisions were surveyed in the summary earlier in this order. See
also Triad Sys. Corp. v. Southeastern Exp. Co., 64 F.3d 1330, 1336 (9th Cir. 1995); Apple Computer, Inc. v.
Microsoft Corp., 35 F.3d 1435, 1444 (9th Cir. 1994); Apple Computer, Inc. v. Formula Intern., Inc., 725 F.2d
521, 525 (9th Cir. 1984).

32

order to discover signals sent between the BIOS and the rest of the game console. Id. at 600.

After uncovering these signals (again, application interfaces), the accused infringer wrote its own

source code to duplicate these interfaces in order to create its emulator for the desktop computer.

Thus, games written for the Playstation console were playable on Connectix’s emulator for

the desktop computer. Citing Section 102(b) and Sega, our court of appeals stated that the

Playstation BIOS contained “unprotected functional elements,” and concluded that the accused

infringer’s intermediate step of copying object code was fair use because it was done for the

“purpose of gaining access to the unprotected elements of Sony’s software.” Id. at 602–03.6

* * *

With apology for its length, the above summary of the development of the law reveals a

trajectory in which enthusiasm for protection of “structure, sequence and organization” peaked

in the 1980s, most notably in the Third Circuit’s Whelan decision. That phrase has not been

re-used by the Ninth Circuit since Johnson Controls in 1989, a decision affirming preliminary

injunction. Since then, the trend of the copyright decisions has been more cautious. This trend

has been driven by fidelity to Section 102(b) and recognition of the danger of conferring a

monopoly by copyright over what Congress expressly warned should be conferred only by

patent. This is not to say that infringement of the structure, sequence and organization is a dead

letter. To the contrary, it is not a dead letter. It is to say that the Whelan approach has given way

to the Computer Associates approach, including in our own circuit. See Sega Enters., Ltd. v.

Accolade, Inc., 977 F.2d 1510, 1525 (9th Cir. 1992); Apple Computer, Inc. v. Microsoft Corp.,

35 F.3d 1435, 1445 (9th Cir. 1994).

In this connection, since the CONTU report was issued in 1980, the number of software

patents in force in the United States has dramatically increased from barely a thousand in

1980 to hundreds of thousands today. See Iain Cockburn, Patents, Tickets and the Financing

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 32 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

7 The issue has been debated in the journals. For example, Professor Pamela Samuelson has argued
that Section 102(b) codified the Baker exclusion of procedures, processes, systems, and methods of operation
for computer programs as well as the pre-Baker exclusion of high-level abstractions such as ideas, concepts, and
principles. Pamela Samuelson, Why Copyright Law Excludes Systems and Processes from the Scope of
Protection, 85 TEX. L. REV. 1921 (2007). In contrast, Professor David Nimmer (the son of Professor Melville
Nimmer) has argued that Section 102(b) should not deny copyright protection to “the expression” of a work
even if that work happens to consist of an idea, procedure or process. 1-2 NIMMER ON COPYRIGHT § 2.03[D]
(internal citations omitted). Similarly, Professor Jane Ginsburg has argued that the Section 102(b) terms
“process,” “system,” and “method of operation” should not be understood literally for computer programs. Jane
Ginsburg, Four Reasons and a Paradox: The Manifest Superiority of Copyright Over Sui Generis Protection of
Computer Software, 94 COLUM. L. REV. 2559, 2569–70 (1994).

33

of Early-Stage Firms: Evidence from the Software Industry, 18 JOURNAL OF ECONOMICS &

MANAGEMENT STRATEGY 729–73 (2009). This has caused at least one noted commentator to

observe:

As software patents gain increasingly broad protection, whatever
reasons there once were for broad copyright protection of
computer programs disappear. Much of what has been considered
the copyrightable “structure, sequence and organization” of a
computer program will become a mere incident to the patentable
idea of the program or of one of its potentially patentable
subroutines.

Mark Lemley, Convergence in the Law of Software Copyright?, 10 HIGH TECHNOLOGY LAW

JOURNAL 1, 26–27 (1995). Both Oracle and Sun have applied for and received patents that claim

aspects of the Java API. See, e.g., U.S. Patents 6,598,093 and 7,006,855. (These were not

asserted at trial.)7

* * *

In view of the foregoing, this order concludes that our immediate case is controlled by

these principles of copyright law:

• Under the merger doctrine, when there is only one (or only a few)

ways to express something, then no one can claim ownership of

such expression by copyright.

• Under the names doctrine, names and short phrases are not

copyrightable.

• Under Section 102(b), copyright protection never extends to any

idea, procedure, process, system, method of operation or concept

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 33 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

34

regardless of its form. Functional elements essential for

interoperability are not copyrightable.

• Under Feist, we should not yield to the temptation to find

copyrightability merely to reward an investment made in a body of

intellectual property.

APPLICATION OF CONTROLLING LAW TO CONTROLLING FACTS

All agree that everyone was and remains free to program in the Java language itself.

All agree that Google was free to use the Java language to write its own API. While Google

took care to provide fresh line-by-line implementations (the 97 percent), it generally replicated

the overall name organization and functionality of 37 packages in the Java API (the

three percent). The main issue addressed herein is whether this violated the Copyright Act and

more fundamentally whether the replicated elements were copyrightable in the first place.

This leads to the first holding central to this order and it concerns the method level.

The reader will remember that a method is like a subroutine and over six thousand are in play

in this proceeding. As long as the specific code written to implement a method is different,

anyone is free under the Copyright Act to write his or her own method to carry out exactly the

same function or specification of any and all methods used in the Java API. Contrary to Oracle,

copyright law does not confer ownership over any and all ways to implement a function or

specification, no matter how creative the copyrighted implementation or specification may be.

The Act confers ownership only over the specific way in which the author wrote out his version.

Others are free to write their own implementation to accomplish the identical function, for,

importantly, ideas, concepts and functions cannot be monopolized by copyright.

To return to our example, one method in the Java API carries out the function of

comparing two numbers and returning the greater. Google — and everyone else in the world —

was and remains free to write its own code to carry out the identical function so long as the

implementing code in the method body is different from the copyrighted implementation. This is

a simple example, but even if a method resembles higher mathematics, everyone is still free to

try their hand at writing a different implementation, meaning that they are free to use the same

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 34 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

8 Each method has a singular purpose or function, and so, the basic function or purpose of a method
will be an unprotectable process. Gates Rubber Co. v. Bando Chemical Industries, Ltd., 9 F.3d 823, 836
(10th Cir. 1993); see Apple Computer, Inc. v. Formula Intern. Inc., 725 F.2d 521, 525 (9th Cir. 1984) (holding
that while a particular set of instructions is copyrightable, the underlying computer process is not).

35

inputs to derive the same outputs (while throwing the same exceptions) so long as the

implementation in between is their own. The House Report, quoted above, stated in 1976 that

“the actual processes or methods embodied in the program are not within the scope of the

copyright law.” H.R. REP. NO. 94-1476, at 57 (1976).

Much of Oracle’s evidence at trial went to show that the design of methods in an API

was a creative endeavor. Of course, that is true. Inventing a new method to deliver a new output

can be creative, even inventive, including the choices of inputs needed and outputs returned.

The same is true for classes. But such inventions — at the concept and functionality level —

are protectable only under the Patent Act. The Patent and Trademark Office examines such

inventions for validity and if the patent is allowed, it lasts for twenty years. Based on a single

implementation, Oracle would bypass this entire patent scheme and claim ownership over any

and all ways to carry out methods for 95 years — without any vetting by the Copyright Office

of the type required for patents. This order holds that, under the Copyright Act, no matter

how creative or imaginative a Java method specification may be, the entire world is entitled

to use the same method specification (inputs, outputs, parameters) so long as the line-by-line

implementations are different. To repeat the Second Circuit’s phrasing, “there might be

a myriad of ways in which a programmer may . . . express the idea embodied in a given

subroutine.” Computer Associates, 982 F.2d at 708. The method specification is the idea.

The method implementation is the expression. No one may monopolize the idea.8

To carry out any given function, the method specification as set forth in the declaration

must be identical under the Java rules (save only for the choices of argument names). Any other

declaration would carry out some other function. The declaration requires precision.

Significantly, when there is only one way to write something, the merger doctrine bars anyone

from claiming exclusive copyright ownership of that expression. Therefore, there can be no

copyright violation in using the identical declarations. Nor can there be any copyright violation

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 35 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

9 As to the groupings of methods within a class, Google invokes the scenes a faire doctrine. That is,
Google contends that the groupings would be so expected and customary as to be permissible under the scenes a
faire doctrine. For example, the methods included under the Math class are typical of what one would expect to
see in a group of math methods. Just as one would expect certain items in the alcove for nuts, bolts and screws

36

due to the name given to the method (or to the arguments), for under the law, names and short

phrases cannot be copyrighted.

In sum, Google and the public were and remain free to write their own implementations

to carry out exactly the same functions of all methods in question, using exactly the same method

specifications and names. Therefore, at the method level — the level where the heavy lifting is

done — Google has violated no copyright, it being undisputed that Google’s implementations

are different.

As for classes, the rules of the language likewise insist on giving names to classes and

the rules insist on strict syntax and punctuation in the lines of code that declare a class. As with

methods, for any desired functionality, the declaration line will always read the same (otherwise

the functionality would be different) — save only for the name, which cannot be claimed

by copyright. Therefore, under the law, the declaration line cannot be protected by copyright.

This analysis is parallel to the analysis for methods. This now accounts for virtually all of the

three percent of similar code.

* * *

Even so, the second major copyright question is whether Google was and remains free to

group its methods in the same way as in Java, that is, to organize its Android methods under the

same class and package scheme as in Java. For example, the Math classes in both systems have

a method that returns a cosine, another method that returns the larger of two numbers, and yet

another method that returns logarithmic values, and so on. As Oracle notes, the rules of Java

did not insist that these methods be grouped together in any particular class. Google could have

placed its trigonometric function (or any other function) under a class other than Math class.

Oracle is entirely correct that the rules of the Java language did not require that the same

grouping pattern (or even that they be grouped at all, for each method could have been placed

in a stand-alone class).9

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 36 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

in a hardware store, one would expect the methods of the math class to be in, say, a typical math class. At trial,
however, neither side presented evidence from which we can now say that the same is true for all the other
hundreds of classes at issue. Therefore, it is impossible to say on this record that all of the classes and their
contents are typical of such classes and, on this record, this order rejects Google’s global argument based on
scenes a faire.

10 This is a good place to point out that while the groupings appear to be the same, when we drill down
into the detail code listings, we see that the actual sequences of methods in the listings are different. That is, the
sequence of methods in the class Math in Android is different from the sequence in the same class in Java,
although all of the methods in the Java version can be found somewhere in the Android version, at least as
shown in their respective listings (TX 47.101, TX 623.101). The Court has not compared all six-hundred-plus
classes. Nor has any witness or counsel so far on the record. Oracle does not, however, contend that the actual
sequences would track method-for-method and it has not so proven. This detailed observation, however, does
not change the fact that all of the methods in the Java version can be found somewhere in the Android version,
classified under the same classes.

11 The parentheses indicate that inputs/arguments may be included in the command.

37

Oracle’s best argument, therefore, is that while no single name is copyrightable, Java’s

overall system of organized names — covering 37 packages, with over six hundred classes, with

over six thousand methods — is a “taxonomy” and, therefore, copyrightable under American

Dental Association v. Delta Dental Plans Association, 126 F.3d 977 (7th Cir. 1997). There was

nothing in the rules of the Java language that required that Google replicate the same groupings

even if Google was free to replicate the same functionality.10

The main answer to this argument is that while the overall scheme of file name

organization resembles a taxonomy, it is also a command structure for a system or method

of operation of the application programming interface. The commands are (and must be) in

the form

java.package.Class.method()

and each calls into action a pre-assigned function.11

To repeat, Section 102(b) states that “in no case does copyright protection for an original

work of authorship extend to any idea, procedure, process, system, method of

operation . . . regardless of the form” That a system or method of operation has thousands

of commands arranged in a creative taxonomy does not change its character as a method of

operation. Yes, it is creative. Yes, it is original. Yes, it resembles a taxonomy. But it is

nevertheless a command structure, a system or method of operation — a long hierarchy of

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 37 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

38

over six thousand commands to carry out pre-assigned functions. For that reason, it cannot

receive copyright protection — patent protection perhaps — but not copyright protection.

* * *

Interoperability sheds further light on the character of the command structure as a system

or method of operation. Surely, millions of lines of code had been written in Java before

Android arrived. These programs necessarily used the java.package.Class.method() command

format. These programs called on all or some of the specific 37 packages at issue and

necessarily used the command structure of names at issue. Such code was owned by

the developers themselves, not by Oracle. In order for at least some of this code to run on

Android, Google was required to provide the same java.package.Class.method() command

system using the same names with the same “taxonomy” and with the same functional

specifications. Google replicated what was necessary to achieve a degree of interoperability —

but no more, taking care, as said before, to provide its own implementations.

That interoperability is at the heart of the command structure is illustrated by Oracle’s

preoccupation with what it calls “fragmentation,” meaning the problem of having imperfect

interoperability among platforms. When this occurs, Java-based applications may not run

on the incompatible platforms. For example, Java-based code using the replicated parts of the

37 API packages will run on Android but will not if a 38th package is needed. Such imperfect

interoperability leads to a “fragmentation” — a Balkanization — of platforms, a circumstance

which Sun and Oracle have tried to curb via their licensing programs. In this litigation, Oracle

has made much of this problem, at times almost leaving the impression that if only Google had

replicated all 166 Java API packages, Oracle would not have sued. While fragmentation is a

legitimate business consideration, it begs the question whether or not a license was required in

the first place to replicate some or all of the command structure. (This is especially so inasmuch

as Android has not carried the Java trademark, and Google has not held out Android as fully

compatible.) The immediate point is this: fragmentation, imperfect interoperability, and

Oracle’s angst over it illustrate the character of the command structure as a functional system or

method of operation.

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 38 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

39

In this regard, the Ninth Circuit decisions in Sega and Sony, although not on all fours, are

close analogies. Under these two decisions, interface procedures required for interoperability

were deemed “functional requirements for compatibility” and were not copyrightable under

Section 102(b). Both decisions held that interface procedures that were necessary to duplicate in

order to achieve interoperability were functional aspects not copyrightable under Section 102(b).

Here, the command structure for the 37 packages (including inheritances and exception throws),

when replicated, at least allows interoperability of code using the replicated commands. To the

extent of the 37 packages — which, after all, is the extent of Oracle’s copyright claim — Sega

and Sony are analogous. Put differently, if someone could duplicate the interfaces of the Sony

BIOS in order to run the Playstation games on desktops (taking care to write its own

implementations), then Google was free to duplicate the command structure for the 37 packages

in Android in order to accommodate third-party source code relying on the 37 packages (taking

care to write its own implementations). Contrary to Oracle, “full compatibility” is not relevant

to the Section 102(b) analysis. In Sony, the accused product implemented only 137 of the

Playstation BIOS’s 242 functions because those were the only functions invoked by the games

tested. Connectix’s Opening Appellate Brief at 18, available at 1999 WL 33623860, (9th Cir.

May 27, 1999). Our court of appeals held that the accused product “itself infringe[d] no

copyright.” Sony, 203 F.3d at 608 n.11. This parallels Google’s decision to implement some

but not all of the Java API packages in Android.

* * *

This explains why American Dental Association v. Delta Dental Plans Association,

126 F.3d 977 (7th Cir. 1997), is not controlling. Assuming arguendo that a taxonomy is

protectable by copyright in our circuit, see Practice Mgmt. Info. Corp. v. Am. Med. Ass’n,

121 F.3d 516 (9th Cir. 1997), the taxonomy in ADA had nothing to do with computer programs.

It was not a system of commands, much less a system of commands for a computer language.

The taxonomy there subdivided the universe of all dental procedures into an outline of numbered

categories with English-language descriptions created by the ADA. This was then to be used

by insurance companies and dentists to facilitate billings. By contrast, here the taxonomy is

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 39 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

40

composed entirely of a system of commands to carry out specified computer functions. For a

similar reason, Oracle’s analogy to stealing the plot and character from a movie is inapt, for

movies involve no “system” or “method of operation” — scripts are entirely creative.

In ADA, Judge Frank Easterbrook (writing for the panel) suggested that a “system” under

Section 102(b) had to come with “instructions for use.” 126 F.3d at 980. Because the taxonomy

there at issue had no instructions for use, among other reasons, it was held not to be a system.

By contrast, the API at issue here does come with instructions for use, namely, the

documentation and embedded comments that were much litigated at trial. They describe every

package, class and method, what inputs they need, and what outputs they return — the classic

form of instructions for use.

In our circuit, the structure, sequence and organization of a computer program may (or

may not) qualify as a protectable element depending on the “particular facts of each case” and

always subject to exclusion of unprotectable elements. Johnson Controls v. Phoenix Control

Sys., 886 F.2d 1173, 1175 (9th Cir. 1989). Contrary to Oracle, Johnson Controls did not hold

that all structure, sequence and organization in all computer programs are within the protection

of a copyright. On a motion for preliminary injunction, the district court found that the structure,

sequence and organization of the copyrighted program, on the facts there found, deserved

copyright protection. (The structure, sequence and organization features found protectable were

not described in the appellate decision.) On an appeal from the preliminary injunction, our court

of appeals merely said no clear error had occurred. Again, the appellate opinion stated that the

extent to which the structure, sequence and organization was protectable depended on the facts

and circumstances of each case. The circumstances there are not the circumstances here.

In closing, it is important to step back and take in the breadth of Oracle’s claim. Of the

166 Java packages, 129 were not violated in any way. Of the 37 accused, 97 percent of the

Android lines were new from Google and the remaining three percent were freely replicable

under the merger and names doctrines. Oracle must resort, therefore, to claiming that it owns,

by copyright, the exclusive right to any and all possible implementations of the taxonomy-like

command structure for the 166 packages and/or any subpart thereof — even though it

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 40 of 41

U
ni

te
d

St
at

es
 D

is
tr

ic
t C

ou
rt

Fo
r t

he
 N

or
th

er
n

D
is

tri
ct

 o
f C

al
ifo

rn
ia

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

41

copyrighted only one implementation. To accept Oracle’s claim would be to allow anyone

to copyright one version of code to carry out a system of commands and thereby bar all others

from writing their own different versions to carry out all or part of the same commands.

No holding has ever endorsed such a sweeping proposition.

CONCLUSION

This order does not hold that Java API packages are free for all to use without license.

It does not hold that the structure, sequence and organization of all computer programs may be

stolen. Rather, it holds on the specific facts of this case, the particular elements replicated by

Google were free for all to use under the Copyright Act. Therefore, Oracle’s claim based on

Google’s copying of the 37 API packages, including their structure, sequence and organization

is DISMISSED. To the extent stated herein, Google’s Rule 50 motions regarding copyrightability

are GRANTED (Dkt. Nos. 984, 1007). Google’s motion for a new trial on copyright infringement

is DENIED AS MOOT (Dkt. No. 1105).

IT IS SO ORDERED.

Dated: May 31, 2012.
WILLIAM ALSUP
UNITED STATES DISTRICT JUDGE

Case 3:10-cv-03561-WHA Document 1202 Filed 05/31/12 Page 41 of 41

